Competency 1: Solving Linear Systems

 (Graphically)1. Determine whether the ordered pair $(2,4)$ is a solution to the system:

$$
\left\{\begin{array}{l}
3 x-y=2 \\
2 x+y=0
\end{array}\right.
$$

2. Use the given graph to solve the system of equations represented by the graph.

3. Solve this system of equations by graphing. Use the graph provided. What is the solution?

$$
\left\{\begin{array}{c}
3 x+y=4 \\
x-2 y=6
\end{array}\right.
$$

4. Determine the number of solution(s). Justify your answer.
(a) $\left\{\begin{array}{l}y=-2 x+4 \\ y=\frac{1}{2} x+3\end{array}\right.$
(b) $\left\{\begin{array}{c}y=3 x-7 \\ y=-3 x+7\end{array}\right.$

For problem 5 a and 5 b, write a system of equations that models the situation. Using technology, solve by graphing.
5. (a) The cost of admission to the Spring Carnival was $\$ 50$ for a group of 9 children and 2 adults. The admission was $\$ 61$ for another group of 10 children and 3 adults. What was the admission price for each child? What was the admission price for each adult?
(b) Towing Company A charges $\$ 50$ plus additional $\$ 1$ per mile. Towing Company B charges $\$ 80$ plus $\$ 0.10$ per mile. After approximately how many miles will the cost be the same? What is the approximate cost?

Competency 2: Solving Linear Systems (Algebraically)

Solve each system of linear equations.
6. $\left\{\begin{array}{c}x=y+2 \\ 2 x+y=1\end{array}\right.$
7. $\left\{\begin{array}{c}3 x+5 y=3 \\ \frac{1}{2} x-\frac{5}{3} y=0\end{array}\right.$
8. $\left\{\begin{array}{c}-9 x-3 y=-7 \\ 3 x+y=-5\end{array}\right.$

For problems 9-10, define the variables and write a system of equations that models the situation. Then solve algebraically.
9. David has 24 coins that are all dimes and quarters. The value of the coins is $\$ 3.75$. How many dimes and how many quarters does David have?
10. Leighton's Cycle Shop sells bicycles and tricycles. The number of bicycles is 1 less than 4 times the number of tricycles. All the bicycles and tricycles together have a total of 174 wheels. How many bicycles are there?

Competency 3: Solving Systems of Linear Inequalities

11. Construct a system of inequalities for the graph:

12. Graph to show the solution to this system of linear inequalities given.

$$
\left\{\begin{array}{r}
-3 x+y>-5 \\
6 x+2 y \leq 2
\end{array}\right.
$$

13. Kayla is planning on building a rectangular dog pen for her dog. She can use no more than 80 feet of fencing, as that is all she has. She read that her dog should have a space where the width is at least 8 feet and the length is at least 14 feet.

$$
\begin{aligned}
& \text { Let } \boldsymbol{x}=\text { width of dog pen }(\mathrm{ft}) \\
& \text { Let } \boldsymbol{y}=\text { length of dog pen }(\mathrm{ft})
\end{aligned}
$$

Represent all constraints using equations or inequalities.
14. Graph your inequalities from \#13 on the graph provided.
15. Which of the following are solutions? There may be more than one!
A. $(12,17)$
B. $(7,20)$
C. $(15,20)$
D. $(25,30)$
E. $(10,10)$

Competency 5: Distributed Practice

21. Find the first five terms of the sequence described below.
$a_{1}=-1, \quad a_{n+1}=3 a_{n}+n$
22. Given the following function, evaluate $f(-4)$.
$f(x)= \begin{cases}2 & \text { if } x>-1 \\ x+4 & \text { if } x \leq-1\end{cases}$
23. Simplify: $4 \sqrt{18} \cdot 3 \sqrt{8}$
24. An ATV costs $\$ 8,000$ and depreciates at a rate of 18% per year. Construct an exponential function to model this situation.
25. Find the y-intercept of $f(x)=\frac{1}{8} 3^{x}+2$.

ANSWERS

1. no, $2 * 2+4 \neq 0$
2. $(-2,3)$
3. $(2,-2)$

4. (a) 1 solution, the lines are perpendicular and therefore intersect at one point
(b) 1 solution, the lines have different slopes are will therefore interest at one point
5. (a) $\left\{\begin{array}{c}9 x+2 y=50 \\ 10 x+3 y=61\end{array}\right.$
children's price: $\$ 4$, adult price: $\$ 7$
(b) $\left\{\begin{array}{l}y=50+1 x \\ y=80+0.1 x\end{array}\right.$
after approximately 33 miles the cost will be the same at $\$ 83$.
6. $(1,-1)$
7. $\left(\frac{2}{3}, \frac{1}{5}\right)$
8. No solution
9. $x=$ number of dimes, $y=$ number or quarters

$$
\left\{\begin{array}{c}
x+y=24 \\
0.10 x+0.25 y=3.75
\end{array}\right.
$$

David has 15 dimes and 9 quarters
10. $x=$ number of bicycles, $y=n u m b e r$ of tricycles

$$
\left\{\begin{array}{c}
x=4 y-1 \\
2 x+3 y=174
\end{array}\right.
$$

11. $\left\{\begin{array}{c}y \leq \frac{1}{2} x+4 \\ y>x\end{array}\right.$
12.

13. $\left\{\begin{array}{c}2 x+2 y \leq 80 \\ x \geq 8 \\ y \geq 14\end{array}\right.$
14. check with graphing calculator
15. A and C
16. $-1,-2,-4,-10,-28$
22. $f(4)=0$
23. 144
24. $f(x)=8000(0.82)^{x}$
25. $2 \frac{1}{8}$

